
Percolation on Trees of Valence k

Qianfan Chen, Rachel Fuller, Charlie Gagnon

October 2020

Contents

1 Problem Statement 2

2 Overview 2

3 Simulating Percolation on Regular Trees of Valence k 3
3.1 Estimating Expected Cluster Size by Partitioning, k=2 . . . 3

3.1.1 Initial Results . 3
3.1.2 Interpretation and Adjustments 3

3.2 Estimating Expected Cluster Size by Growth from a Seed . . 4
3.2.1 Results . 4
3.2.2 Interpretation . 4

3.3 Comparing the Two Approaches 5
3.3.1 A Brief Detour . 5
3.3.2 Explaining the Discrepancy 6
3.3.3 Numerical Evidence of the Fundamental Difference . . 6

3.4 Visualization of Some Simulations 8

4 Expectation of Cluster Size 9

5 Distribution of Cluster Sizes 10
5.1 Probability of a Particular Tree 10
5.2 Counting the Number of Distinct Trees with n Vertices . . . 11
5.3 Getting a Distribution of Cluster Sizes, Given n 11

1

0 Acknowledgements

We owe thanks especially to Tom Stone, our intrepid graduate student men-
tor for this project, and thanks also to the organizers of this inaugural Brown
Undergraduate Mathematics Program, Sam Freedman and Sarah Griffith-
Siqueira.

1 Problem Statement

To model percolation on a graph Γ, we choose some probability
p. Each edge will be “open” with probability p, and “closed”
with probability 1 − p. Once the open and closed edges have
been determined, we can start at any vertex v and form the
“cluster” Γ which consists of all vertices connected to v by using
only open edges. The basic question is: what is the expected size
of Γ? With what probability will it be finite (or infinite)? More
generally, what is the “mass spectrum”, that is, the probability
distribution of sizes of clusters? How do all these properties vary
with p?

Project Laboratory in Mathematics: Project descriptions
MIT Course 18.821
September 7, 2016

2 Overview

In [1], percolation is described as a global process, which operates on a
graph to form a collection of subgraphs.

The problem statement is primarily interested in percolation applied to
infinite graphs (graphs with an infinite number of vertices and edges). As a
result, it is possible for the process to form a cluster of any size. Therefore,
the expected size of a cluster is a sum of an infinite number of terms, where
each term corresponds to a particular size. Cluster sizes can be measured in
either their number of vertices or their number of open edges. We measure
cluster size as the number of vertices included in the cluster.

Larger clusters are less likely to be formed, since the openness/closedness
of each edge is independent of that of any other edge, and therefore the
probability of finding each successive open edge within a given region of the
graph is smaller than the probability of finding the previous open edge.

2

http://www-math.mit.edu/~dav/projectsB.pdf
http://www-math.mit.edu/~dav/821.html

3 Simulating Percolation on Regular Trees of Va-
lence k

This code is available at this GitHub repository. We modeled percolation
on infinite regular trees of valence d (using code) in two distinct ways:

3.1 Estimating Expected Cluster Size by Partitioning, k=2

Our first approach (in Java) constructs a very large (but not infinite) initial
graph, and models the k = 2 case, in which all vertices have two neighbors,
except for the first and last vertex, which each have only one neighbor. Once
the graph is constructed, we iterate over all edges and assign them to be
open or closed. We then count the number of clusters and the sum of the
sizes of the clusters (where the size of a cluster is the cluster’s number of
vertices). We take the sum of all cluster sizes divided by the number of
clusters as the mean cluster size. That mean cluster size should be a decent
estimate of the expected cluster size, as long as our initial graph is very
large. To summarize:

E[Xi] ≈
∑n

i=1Xi

n
(1)

where each Xi is the average number of vertices in a particular graph.
This is a good approximation if n is large and all Xi are independent and
identically distributed.

3.1.1 Initial Results

For probability p = 0.5 on a regular tree of valence 2, we predicted an expec-
tation of 3 vertices per cluster (see [4]). Over 100 trials of the simulation,
the average expected cluster size was measured to be 1.46 vertices.

3.1.2 Interpretation and Adjustments

We considered two possible explanations for the discrepancy between our
observed and expected result.

Initial Graph Size: The program seemed to consistently underestimate
our predicted expected size. We assumed that increasing the size of the
initial graph would improve the estimate, by making the finite simulation
graph a better approximation of an infinite graph. However, increasing
the size of the initial graph did not improve our estimate noticeably. We
conclude that our initial graph size (50,000 vertices), is so large that slight

3

https://github.com/FanC096/Percolation

increases to the initial graph size do not meaningfully affect the accuracy of
the estimate of the expected cluster size. Certainly, initial graph size does
not explain the discrepancy between our observed and expected result.

Clusters at Endpoints: We wondered whether the endpoints of the
simulation graph (the simulated regular tree of valence 2 has 2 endpoints)
affected our result, because any cluster that included an endpoint would
be terminated “prematurely.” To better approximate the behavior of an
infinite graph, we made the endpoints of our finite graph “fuzzy.” With this
adjustment, clusters that include an endpoint of the graph can extend the
graph by one vertex at a time (with probability p for each extension to take
place). The cluster stops “growing” (there are no additional vertices added)
after the first time that an extension ”request” is rejected (which for every
request has probability 1− p of occurring).

With fuzzy endpoints, we consistently observe an average cluster size
of 2.0 vertices. Therefore, endpoint effects do not explain the discrepancy
between our observed and expected result for the partitioning approach.

3.2 Estimating Expected Cluster Size by Growth from a
Seed

Our second approach (in Python) models percolation as a local process.
While the Java approach constructs multiple clusters within a finite graph
of predetermined size (and then counts the size of each cluster to calculate
an average) the Python approach ”builds” a single cluster from a ”seed”
vertex, measures the size of the cluster once it is ”fully grown,” and repeats
this process for a fixed number of trials.

The Java approach places a fixed (though fuzzy) size on the total number
of vertices in the initialized graph, while the “growth-from-seed” approach
places a fixed maximum on the number of vertices in each cluster (set by
the recursion limit).

3.2.1 Results

For a regular tree of valence 2, (k = 2) and p = 0.5, the Python approach
measures the average cluster size to be approximately 3.0 vertices. This is
consistent with our predicted expectation of cluster size.

3.2.2 Interpretation

Since this process constructs clusters in layers (with each layer corresponding
to a particular “level” of the Python script’s recursive calls), we can describe

4

the expected size of clusters formed by this process as a geometric series (in
terms of the number of layers in the cluster). The expectation of the size of
clusters formed through this process is described in [4].

3.3 Comparing the Two Approaches

In the partitioning (Java) approach, in order for a particular cluster to
“gain” a vertex, the neighboring cluster is prevented from containing that
vertex (since if the neighboring cluster is connected to this border vertex,
then the two clusters are actually parts of the same cluster). By contrast,
in the Python approach, the structure of each cluster does not affect the
structure of any other clusters, since the Python approach does not consider
the “locations” of the clusters at all - clusters are not embedded on a shared
tree.

3.3.1 A Brief Detour

The code structure of the Python approach makes it easy to modify the
shape of the constructed clusters. The parameter additional main branches

can be adjusted to create ”spokes” of additional regular trees of valence k
that all attach to the same root node. For p=0.5, k = 2, and
additional main branches = n, the average cluster size is 3+n. This pat-
tern suggests that additional “main branches” may be thought of as inde-
pendent “opportunities” for vertices to grow from the root.

While adding “fuzzy endpoints” to the Java code, we initially wondered
whether this pattern in the Python code may explain why the Java approach
gives an expectation of 2.0. At first, we adjusted the Java code so that only
the final vertex was fuzzy (with the root vertex not yet fuzzy). That model
felt similar to the Python approach with k = 2 and
additional main branches = -1, because in both cases, clusters can grow
infinitely far from the root, but only in a single direction. (When adm=0 and
k = 2, clusters can grow infinitely far from the root in two directions.) Both
of these models give an average cluster size of 2.0 vertices.

However, after the Java code was adjusted so that both graph endpoints
were fuzzy (which would seem to visually correspond to the Python code
with k = 2 and adm=0, the Java program still gave an average cluster size
of 2.0 vertices, instead of our predicted result of 3.0 vertices. This result
suggests that the partitioning (Java) approach and growth-from-
seed (Python) approach are fundamentally different.

5

3.3.2 Explaining the Discrepancy

In the growth-from-seed approach, each trial measures the number of vertices
in a graph grown from a root vertex. At the beginning of each trial, a
minimum of k “coin flips” are performed, in order to determine whether
each of the root’s k edges are open or closed.

In the partitioning approach, not every root is granted k indepen-
dent “coin flips”, because in this approach, each “trial” involves multiple
clusters that share the same (partitioned) graph. As a result, the right-side
neighbor of the first vertex shares an edge (and therefore shares a “coin flip”)
with the left-side neighbor of the second vertex. If that edge is closed, the
first and second vertex are part of separate clusters, and the size of the
first vertex’s cluster is no longer independent of the size of the sec-
ond vertex’s cluster. By contrast, in the growth-from-seed approach, the
size of every cluster is not influenced by that of all other clusters, because
each cluster exists on its own graph.

Another way to interpret the difference is that, the partition approach is
estimating the expected size of a cluster (where the expectation is taken over
all possible clusters), while the growth-from-seed approach is estimating the
expected size of the cluster to which a vertex belongs (where the expectation
is taken over all possible vertices). At first glance, they seem to be calculat-
ing the same expectation, just with a different way of counting. However,
there is an important difference: in the growth-from-seed method, a cluster
of size t is counted t times, by each of its t vertices, while in the partition
approach, any cluster is counted just once. As a consequence, the result
by growth-from-seed method is larger than that by partition approach, as
larger clusters are counted more times.

In this view, these two processes are fundamentally different (i.e. give
different results) when applied to a finite graph. A major remaining question
is whether, given an infinite graph to partition, the Java approach would also
yield an average cluster size of 3.0 vertices in the k = 2 case. On an infinite
graph, it seems reasonable that cluster sizes might behave as if determined
independently: no matter where a closed edge would occur, there would
be regions of the graph sufficiently far away to “escape” the effect of that
partition.

3.3.3 Numerical Evidence of the Fundamental Difference

The following table summarizes findings that suggest that the Java approach
(with two fuzzy endpoints) mimics the Python approach with

6

additional main branches (adm) set to -1, which means that the “seed”
(root node) has only k − 1 children, instead of k children. For the Java
simulations, the expectations are the average over 100 runs on graphs with
approximately 5000 vertices (this number is approximate due to fuzzy end-
points), for each value of p. For the Python simulations, the expectations
are the average cluster size for 1.000,000 growth-from-seed trials for each
value of p.

We have not developed a “visual” explanation of why the Java code
behaves like the Python code with adm = −1.

Expected Cluster Size (number of vertices)

p Java, k = 2 Python, k = 2, adm = −1

0.1 1.1110585966611612 1.111508
0.2 1.2498430716611117 1.250301
0.3 1.4285463583578437 1.428301
0.4 1.6677872496040012 1.666358
0.5 2.000825151857754 1.999642
0.6 2.499215130408659 2.502326
0.7 3.336351644758741 3.33435
0.8 5.001444912246423 4.998291
0.9 10.020327691669797 9.97686

7

3.4 Visualization of Some Simulations

Here are the histograms from several simulations for a more intuitive pre-
sentation of the distributions across different P and different k’s :

(a) k = 2, p = 0.3 (b) k = 3, p = 0.3 (c) k = 4, p = 0.3

(d) k = 2, p = 0.4 (e) k = 3, p = 0.4

(f) k = 2, p = 0.5

8

4 Expectation of Cluster Size

In this section, we calculate the expected result of the growth-from-seed
approach, which is equivalent to the expectation of the size of a cluster
“grown” from a single root vertex.

We mention in [3.3.2] that the growth-from seed method estimates the
expectation of the size of the cluster to which a vertex belongs. This is an
equivalent description of the same probability, since in both descriptions, a
vertex is fixed, and we consider the expected size of cluster containing that
vertex.

To calculate the size of a cluster, let the layer 0 be the set containing just
the root vertex, layer 1 be the set containing the children of the root, layer
2 the set containing the grandchildren of the root, etc. In general, layer i,
(denoted as Li) is defined to be the set containing the vertices that are i
edges away from the root.
Then, the size the cluster is

S =
∞∑
i=0

|Li|

Then,

E[S] = E[

∞∑
i=0

|Li|] =

∞∑
i=0

E[|Li|]

For every layer i vertex in this tree, the expected number of its children (in
layer i + 1) is {

k · p i = 0

(k − 1) · p i > 0

Therefore, we derive the recursive relation

E[|Li+1| | Li] =

{
k · p · |Li| i = 0

(k − 1) · p · |Li| i > 0

Thus, by rule of total probability,

E[|Li+1|] =

{
k · p · E[|Li|] i = 0

(k − 1) · p · E[|Li|] i > 0

9

Therefore,

E[|Li|] =


1 i = 0

kp i = 1

kp((k − 1)p)i−1 i > 1

The expectation of S is finite if and only if (k − 1)p < 1.
In that case,

E[S] = 1 +
kp

1− (k − 1)p

5 Distribution of Cluster Sizes

We tried to find the probability distribution of such percolation. That is,
to find the probability of having exactly n vertices grown from a “seed”
in a given k−valent tree. The probability distribution Pn proposed in this
section are under the interpretation of the growth-from-seed approach.

We tried random simulation, and the result shows that this distribution con-
verges slower than the geometric sequence (as n increases), which is what
we expected at first. Then we tried to derive the formula by hand.

5.1 Probability of a Particular Tree

Lemma 1 On any of model of trees of valence k, the probability of getting
a particular tree with n vertices is

Pparticular shape = pn−1(1− p)k+(n−1)(k−2)

The reason is as follows:
Let’s use the phrase closed edges to refer to the edges that connects an
included vertex with an excluded node, and use open edge to refer to the
edges that connect two included vertices. When we just have the root (1
node), we have k closed edges and 0 open edges. Each time we include a
node, we include 1 more open edge and k− 2 more closed edges. Therefore,
when we have N vertices in total, we would have k + (n− 1)(k − 2) closed
edges, and n − 1 open edges. Therefore, the probability of obtaining
an n-vertex tree that has a particular assembly of open and closed
edges is exactly the probability of closing those k + (n − 1)(k − 2)
edges, and opening those n− 1 edges, which is

Pparticular shape = pn−1(1− p)k+(n−1)(k−2)

10

5.2 Counting the Number of Distinct Trees with n Vertices

To calculate the probability of getting some tree with n vertices, we just
need to count the number of trees with n vertices.
When k = 2, this is fairly easy, as there are n different trees with n vertices,
starting from a certain root (think of sliding a segment along the axis, always
covering the root). Thus, for k = 2, the distribution is just

Pn = npn−1(1− p)2

For k ≥ 2, however, this becomes significantly more complicated. We write a
recurrence relation using the notation Ck(n) to represent the number of trees
with n vertices in a model of trees where each vertex has d children (thus,
our original model of valence k + 1 consists of k + 1 such trees and a shared
root), and use Sk(n) to denote the number of trees in a model of k-valent
trees. For a tree T with t nodes, we write t − 1 as a sum of non-negative
x1, . . . , xk−1, which represents a way of dividing the t−1 vertices (t vertices
minus the root) into the subtrees, whose roots are children of the root of
T . Then, we could use the recurrence relation to calculate the number of
possible trees with xi nodes, which is the number of ways to form each of
those subtrees. Multiply the number of ways to form each subtree, and we
get the number of possible trees represented by a specific summation. Then
we consider all the possible ways to write t − 1 as a sum of non-negative
x1, . . . , xk−1, and we sum up all the results to get Ck(t). So we have

Ck(1) = Ck(0) = 1

Ck(t) =
∑

x1+...xk−1=t−1,xi∈N

k−1∏
i=1

Ck(xi)

Sk(t) =
∑

x1+...xk=t−1,xi∈N

k∏
i=1

Ck(xi)

The calculation of Sk(t) is different from that of Ck(t) only in that the ”seed”
has k, not k − 1.

5.3 Getting a Distribution of Cluster Sizes, Given n

Plugging Pparticular shape [5.1] into the formula for Sk(n) [5.2], we get that

Proposition 1 The probability of observing a growth-from-seed cluster with
n vertices (on a tree of valence k and probability of an included edge p) is

Pn = Sk(n)pn−1(1− p)k+(n−1)(k−2)

11

	Problem Statement
	Overview
	Simulating Percolation on Regular Trees of Valence k
	Estimating Expected Cluster Size by Partitioning, k=2
	Initial Results
	Interpretation and Adjustments

	Estimating Expected Cluster Size by Growth from a Seed
	Results
	Interpretation

	Comparing the Two Approaches
	A Brief Detour
	Explaining the Discrepancy
	Numerical Evidence of the Fundamental Difference

	Visualization of Some Simulations

	Expectation of Cluster Size
	Distribution of Cluster Sizes
	Probability of a Particular Tree
	Counting the Number of Distinct Trees with n Vertices
	Getting a Distribution of Cluster Sizes, Given n

