
CSCI 1430 Final Project Report:
Semantic Image Synthesis with Spatially-Adaptive Normalization

James TompGAN: Jeremy Chen, Steven Cheung, Jason Ho, Charlie Gagnon
Brown University

9th May 2020

Abstract

Our final project is an implementation of NVIDIA’s Gau-
GAN paper in Tensorflow (rather than PyTorch), using
weaker computing resources. The paper proposes a novel
spatially adaptive normalization for semantic image syn-
thesis models. Since typical normalization loses some input
semantic information, the proposed spatially adaptive nor-
malization is designed to preserve semantic information by
conditioning the normalization on the structure of each input
segmentation map. Due to our limited computing resources,
we were forced to omit certain aspects of the paper’s archi-
tecture and reduce the resolutions of the generated images.
Despite those constraints, we successfully trained a model
that generates somewhat realistic images based on semantic
maps of landscape scenes. Our code is available here and
our dataset is available here.

1. Introduction

Generating photo-realistic images is useful both for di-
rected tasks, such as image editing, and explorative tasks,
such as automated content generation, and image generation
has attracted recent research attention as a test of the limits
of deep learning. Image generation is a very difficult task,
because an image’s geometry, shadows, texture, and light
all must be reasonably realistic in order for the entire image
to be “believable.” In recent years, Generative Adversarial
Networks (GANs) [1] have come to dominate image syn-
thesis, producing very convincing images when trained on
sufficiently large datasets. Additional improvements to the
GAN paradigm for image generation, such as NVIDIA’s
GauGAN, are focused on classifying and preserving seman-
tic information [3] to minimize the distortion of fine details.

We are particularly interested in photo-realistic genera-
tion from semantic input, modeled after NVIDIA’s GauGAN
paper [3]. The paper’s use of Spatially Adaptive Normaliza-
tion preserves semantic information that is lost with other
normalization techniques (e.g. conditional Batch Normaliza-

tion as in Pix2PixHD [6]). We implement NVIDIA’s paper
[3] using less computation and training time.

Our implementation is trained on select natural landscape
images from the ADE20K dataset [7] which contains pairs
of images and their labeled segmentation maps, with object
labels sourced from WordNet. Our final project follows the
architecture of the original NVIDIA paper, save for changes
that were necessary reduce computation cost.

2. Related Work
Generative Models for Images GANs learn to produce new
images using a generator and discriminator [1]. A generator
tries to create photorealistic images in order to “fool” the
discriminator, and the discriminator learns to distinguish real
images (photographs) from generated images.
SPADE Normalization Spatially-Adaptive Normalization
(SPADE) [3] is a conditional normalization that takes in an
input and segmentation map and performs a learned trans-
formation that makes the image more interpretable for train-
ing while preserving relevant semantic information. This
learned normalization allows for much more realistic gener-
ated images from segmentation maps that have large sections
composed of one particular object.
Semantic Image Synthesis Pix2PixHD [6] tries to generate
photorealistic images from segmentation maps. The model is
an improvement on the original Pix2Pix (another GAN), and
uses a coarse-to-fine generator and multi-scale discriminator.
NVIDIA’s GauGAN [3] is another model that is able to pro-
duce realistic details on large areas from segmentation maps.
Compared to other conditional GANs, GauGAN usually per-
forms the best (in terms of FID score, which measures the
similarity between generated images and their real counter-
parts [2]). Our project is based on NVIDIA’s implementation
of GauGAN, but is written with TensorFlow, rather than
PyTorch.

3. Method
Data Preparation: We trained and tested models on a set of
natural landscape images selected from the ADE20K dataset.

1

https://github.com/chekfung/James_TompGAN
https://drive.google.com/open?id=1Gej31uWtx5taK8KSSn6Gom5PWbNwwUqp


The original paper reported superior generated images from
models trained on the entire ADE20K dataset, ADE20K-
outdoor (a 5000-image subset of ADE20K that includes only
outdoor scenes), and a set of landscape images collected
from Flickr and segmented with a trained image segmenta-
tion network [3]. To isolate a smaller subset of ADE20K than
ADE20K-outdoor, and to emulate the content of the Flickr-
collected landscapes without producing segmentation maps
ourselves, we qualitatively selected images from ADE20K
by scene type (as labeled in the dataset). We then eliminated
images that did not include at least three distinct objects
from a list of landscape-like objects that we curated based
on the content of the Flickr images.
Segmentation maps are fed to the model as one-hot en-
coded, three-dimensional image-vectors, with each image-
dimensional slice encoding the presence or absence of a
particular object from our selected list.
In order to decrease the complexity of the task that we pre-
sented to the model, we relabeled the segmentation maps in
our selected subset of ADE20K so that image regions with
objects that were not on our list of landscape-like objects
were marked as regions with unknown semantic content.
In order to operate on the dataset, we wrote code to adapt the
index of semantic information provided with ADE20K for
Python. The dataset’s provided semantic data is formatted
in MATLAB, so we converted the semantic indices to CSV
files, and made queries to those CSV files in order to isolate
information about particular images and objects. The code to
convert the MATLAB index files to CSV format is included
in the projects GitHub repository.
SpadeLayer: As stated above, one of the largest changes
GauGAN makes from previous architectures is the imple-
mentation of a spatially adaptive normalization. We imple-
mented this by creating a custom Keras layer called Spade-
Layer. Just like in the original paper, it first performs batch
normalization on the input. Simultaneously, it performs two
convolutions on the original segmentation map input creating
a β and γ. The batch normalized input is then element-wise
multiplied by γ and added to β (Figure 1).
SpadeBlock: We created another custom Keras layer called
SpadeBlock, which is the main layer used in the generator.
The layer mimics a ResNet block but uses SpadeLayer to
normalize. (Figure 2)
Generator: To reduce computation cost, we did not use an
image encoder. Instead, the first input to our generator is
the image segmentation map and randomly encoded noise,
which is passed through a convolution layer. This result
is then passed through seven SpadeBlocks and upsampled
five times in between (as opposed to seven in the original
implementation [3]. Finally, this result is passed through a
convolution layer which returns the generated image. Our
generator uses two types of losses: first is a hinge loss on the
discriminator logits produced from the generator’s images.

Figure 1. Architecture of a SPADE layer (from [3])

Figure 2. Architecture of a SPADE block (from [3])

The generator loss is a VGG loss which measures content
and style differences between generated and fake images.
Discriminator: Our discriminator is fairly standard. First, it
concatenates either the fake or real image with its segmen-
tation map. Next, the concatenated object is passed through
four convolution layers and one convolutional layer with
one filter, representing the head of the discriminator. This
produces a real or fake logit on each part of the image. The
discriminator uses hinge loss on real and fake images.
Other Implementation Details: In convolutional layers for
both the discriminator and generator, we applied spectral nor-
malization, as implemented in [4]. In addition to the original
NVIDIA paper’s PyTorch implementation, we periodically
compared our implementation structure to that of [5]’s.

4. Results

Our most accurate model was trained over 200 epochs
with a batch size of 8, image size of 96 x 128, generator
learning rate of 0.0001, and discriminator learning rate of
0.0004. The training set included approximately 1200 images
and their corresponding segmentation maps.

Training Results: We tracked average Frechet Inception
Distance (FID), average generator loss, and average discrim-
inator loss per epoch. Our average FID started at around



Figure 3. Average FID per Epoch

Figure 4. Average Generator Loss per Epoch

Figure 5. Average Discriminator Loss per Epoch

70 and stabilized around 5 (Figure 3). Our generator loss
started very high at around 80k and stabilized around 12k.
This high generator loss is due to weighting our VGG loss
by 10 in comparison to hinge loss. Our hinge loss after 200
epochs is around 1. (Figure 4). Our discriminator loss started
at about 12 but stabilized around 0.0001. (Figure 5). Figure 4
shows the generator output sampled every 40 epochs. By the
end of the 200 training epochs, the images generated during
training closely resemble the ground truth images.

Test Results: Generated images from our test set did no-
ticeably worse, although most still closely resembled natural
landscapes. Some generated examples preserved semantic in-

Figure 6. Training Output Every 40 Epochs. Generated Image on
Left; Real Image on Right

Architecture Our Dataset ADE20K ADE20K-outdoor
James TompGAN 60.77

NVIDIA GauGAN [3] 33.9 63.3
pix2pixHD [6] 81.8 97.8

Figure 7. Comparison of average FID score during testing for
various architectures and datasets

Figure 8. Example of Poor Test Performance (Generated on Left)

formation but failed on larger details. Figure 8 shows how the
generator preserved a fence but failed in creating mountains
or the snowy landscape. Figure 4 shows good test examples
where most semantic information was preserved and the gen-
erated/ground truth images look similar. Figure 7 displays
the avergae FID score that our model achieved on the test
set, in comparison to the original NVIDIA implementation
and other semantic image synthesis models. We note that, in
terms of average FID score, our model performs better (on
the small subset of ADE20K that we selected) than both the
original NVIDIA GauGAN implementation and Pix2PixHD
perform on ADE20K-outdoor. Of course, numerical compar-
isons between those models and our implementation are not
fully appropriate, since we operate on much smaller images.

4.1. Discussion

4.1.1 Changes to Original Architecture

One of the major changes our team made was to reduce the
image and batch size in order to decrease computation cost.
Their implementation uses an image size of 2048 × 1024
and a batch size of 32, while ours uses 128 × 96 and a
batch size of 8. The reduced image size meant there was
less detail in the input images and the reduced batch size
may have decreased the effectiveness of batch normalization.
We believe this is the primary reason why our generated



Figure 9. Good Test Examples (Fake on Left)

pictures aren’t entirely photo-realistic like in the original
paper. We had to do reduce the scale of the task because
we used a single NVIDIA GTX 1080Ti to train models,
while the original paper used an NVIDIA DGX1 server
with 8 NVIDIA Tesla V100 GPUs, which has vastly more
computing power and memory than what we could access.

Another change was the exclusion of the image encoder
which produced a the parameters for the sample noise for the
generator. This would have allowed us to generated images
with different styles while preserving high level features.
This was mostly for, again, reducing the computation cost
given the resources we had.

Overall, the changes we made to the original paper’s
model architecture were necessary tradeoffs between ac-
curacy and computational resources, and we feel that we
successfully implemented the techniques of the paper, but
on a smaller scale.

4.1.2 Behavior on Excluded Objects

As we trained early models with a working architecture, we
adjusted the list of landscape-like objects to include in the
generated images. At first, we did not include some promi-
nent objects, such as “sun.” When generating images from
segmentation maps that were missing prominent objects, the
model was generally able to “remove” those objects from
the scene, by filling regions of unknown semantic content
with content similar to neighboring regions. This behavior
(shown in Figure 10) suggests that the trained model learns
to prefer adjacent image regions with similar content, and
does not simply fill regions of unknown semantic content
with noise. As a result, this model architecture is not likely
to perform as well when input segmentation maps with un-
known content have sharp variation in the appearance of the
unknown content and adjacent known content. This effect
makes the model severely limited by the precision of the
semantic information it receives, since the model may not
properly generate an object it “knows” if those objects occur
next to regions with unknown semantic content.

Figure 10. Generated beach image (at left) with the sun labeled
as unknown content. We note the distortion of the sky near the
location of the sun in the real image (shown at right).

5. Conclusion
Team Sentiments

We were able to partially recreate the results of NVIDIA’s
GauGAN paper. Our generated images had a clear resem-
blance of natural landscapes but did not have the same quality
or resolution as the original paper’s. Given that the original
paper [3] uses 8 32 GB V100 GPUs while we used 1 11
GB 1080 TI, we believe that our results are very successful.
Of course, we generate much smaller image sizes and our
images have less photo-realism, but on many of the test im-
ages, the generated images look very good. By the qualified
success of our small-scale emulation of the original NVIDIA
paper, we believe that we demonstrate that contemporary
techniques in deep learning are practically accessible with-
out much research experience, and that computing resources
(physical hardware and time) are the primary limitation on
access to contemporary research findings. Working in this
reduced architecture and still producing relatively good re-
sults shows that it is still feasible to reduce computation cost
greatly without needing to sacrifice too much accuracy.

As a team, we found that this project underscored the
importance of appropriate data selection in deep learning
and machine learning generally. We spent significant time
writing code to access the semantic information in the
ADE20K dataset, because the scripts and informational
indices provided with the dataset were written in MATLAB,
while our project was implemented in Python. The choice of
a more Python-friendly dataset may have offered us more
time to adjust or extend the model architecture. Additionally,
we found that hand-selecting a natural-landscape subset of
ADE20K made the quality of our results quite sensitive to
the objects we chose to include in the generated images.
It would have been preferable to select a dataset with
less scene diverity, or to arrange for more computational
resources so that we did not need to limit the size of our
training set so dramatically.

Project Implications

While the original NVIDIA paper reported more realis-
tic generated images than other semantic image synthesis
models, it is not clear that our implementation produced
significantly more realistic images than other architectures



(such as Pix2PixHD [6]). This result may suggest that the
benefits of SPADE normalization are marginal, and most
significant only for models trained with sufficiently large
computing resources. If so, our findings reinforce the idea
that contemporary outcomes in deep learning (particuarly for
image generation) are limited more by hardware constraints
than by the complexity of the techniques.

Appendix
Team Contributions

Jeremy Chen I focused mainly on writing the generator ar-
chitecture. I also worked on the preprocessing of images
and segmentation maps, such as converting the segmen-
tation maps to a universal grayscale image that could
be used for comparison and implementing one-hot en-
coding for better training, along with some debugging.

Steven Cheung : Focused mainly on writing the Spade-
Layer and SpadeBlock Keras layers. Also worked on
train() and test() in the main function and created a
script to visualize FID and losses over time. Created
a class to implement VGG loss and wrote a custom
convolution function that was compatible with spectral
normalization. Finally, worked on general debugging
which included most portions of the code.

Jason Ho : Originally I worked on preprocessing the
ADE20K dataset [7] to explicitly grab natural imagery
scenes and scale down the images and segmentation
maps to the correct size. In addition, I wrote the prepro-
cessing script that loads the dataset with Charlie and
Jeremy into the trainer.I then worked on writing the
discriminator Keras model for the GANs. I spent most
of my time debugging all of the code as we put the parts
together and writing scripts to debug those parts. Of
the time spent training, I tuned the hyper parameters to
produce good results.

Charlie Gagnon naı̈vely agreed to work on processing the
ADE20K semantic data in order to access each image’s
object content. This was very frustrating to do, but it got
done. After converting the MATLAB data into CSV for-
mat, Charlie worked on selecting images from ADE20K
by object content. The approach was ultimately com-
bined with Jason’s approach (selecting images by scene
type) to produce the final selection process: selecting
all images from handpicked scene types, and filtering
out images that did not contain at least three distinct
objects from a hand-designed list of landscape-like ob-
jects. Charlie then worked on formatting the images and
encoding the segmentation maps as they were fed into
the model. Charlie assisted with debugging all parts of
the model architecture.

Additional Images Generated on the Test Set

Generated images are on the left, with corresponding
ground truth images on the right.

References
[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial networks, 2014. 1

[2] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium, 2017. 1

[3] T. Park, M. Liu, T. Wang, and J. Zhu. Semantic image synthesis
with spatially-adaptive normalization. CoRR, abs/1903.07291,
2019. 1, 2, 3, 4

[4] taki0112. Spectral normalization-tensorflow, Aug 2018. 2
[5] taki0112. Spade-tensorflow, Aug 2019. 2
[6] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro.

High-resolution image synthesis and semantic manipulation
with conditional gans. CoRR, abs/1711.11585, 2017. 1, 3, 5

[7] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-
ralba. Scene parsing through ade20k dataset. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5122–5130, 2017. 1, 5


